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particular Witten [4] showed that the solitons have to be
quantized as fermions for an odd number of colors.I have used the shooting method to find the eigenvalues (bound

state energies) of a set of strongly coupled Schrödinger type equa- One method of calculating the baryon number of the
tions. I have discussed the advantages of the shooting method when skyrmion is the adiabatic method of Goldstone and
the potentials include d-functions. I have also discussed some points Wilczek [5] or its modification by MacKenzie and Wilczek
which are universal in these kind of problems, whose use make the

[6]. In the latter method, one couples the fermions (bary-algorithm much more efficient. These points include mapping the
ons) to a background pseudoscalar fields (pions). The back-domain of the ODE into a finite one, using the asymptotic form of

the solutions, best use of the normalization freedom, and converting ground field then evolves from a topologically trivial con-
the d-functions into boundary conditions. Q 1996 Academic Press, Inc. figuration to a nontrivial one (a soliton). Meanwhile, by

observing the energy spectrum of the fermion, one can
deduce the vacuum polarization of the fermion field in-

1. INTRODUCTION duced by the presence of the soliton. The vacuum polariza-
tion is believed to be the fermion number of the soliton.In this paper I discuss a numerical method for solving
In a previous paper, I have used this method to find thean eigenvalue problem which is in the form of two strongly
baryon number of a skyrmion with sharply varying spatialcoupled Schrödinger type equations. The potentials for
profile in (3 1 1) dimensions [7]. The numerical methodthese equations contain d-functions. The method used is
discussed here has been utilized in that paper. Also for abased upon the shooting method [1]. I show how one can
thoroughly analyzed example of vacuum polarization byuse some transformations and properties of this ODE, in
solitons in (1 1 1) dimensions see Ref. [8]. This brings usorder to make the problem suitable for the shooting
to the Dirac equation for the fermion field c(r, t) in themethod and make the algorithm efficient. In addition to
presence of the background field u(r).the points mentioned above, I discuss the most effective

way of correlating the corrections to the discrepancies dur-
Hc 5 [a ? p 1 bm(cos u 1 ic5t ? r̂ sin u)]c 5 Ec, (1)ing the iteration process, minimizing the number of un-

knowns using some limited analytic results, and the most
where a, b, and c5 are the conventional Dirac matrices,effective way of initiating the search for the eigenvalues
m is the mass of the fermion, and t is the generator of theespecially when the spectrum includes continuum parts as
isospin rotation. c is an isodoublet Dirac spinor, i.e.,well as discrete parts. It is worth mentioning that this

method works equally well whether or not there are d-
functions present. After displaying the results, I discuss
them on physical grounds. Before discussing the numerical c(r, t) 5 SP(r, t)

N(r, t)
D,

method, I would like to discuss briefly whence the problem
arose. The reader who is interested only in the numerical

where P and N stand for proton and neutron, respectively.method can skip to section two.
Note that H commutes with K, K2, I2, S2 and the parityOver 30 years ago, Skyrme [2] conjectured that the soli-
operator, where K 5 L 1 S 1 I is the grand spin operator,tonic excitations of the nonlinear s-model (skyrmions) are
S 5 Ass is the spin operator, and I 5 Ast is the isospinto be associated with baryons, when the fields in the nonlin-
operator. Hence the eigenstates of H are labeled by theear s-model are pions. Over the past two decades, much
eigenvalues of these operators.work has been done to confirm this conjecture [3, 4]. In

The method employed in Ref. [7] to solve this Dirac
equation is to find the eigenstates and eigenvalues of H* Present address: Department of Physics, Shahid Beheshti University,

Evin, Tehran 19834, Iran. through those of H 2. One can easily obtain
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cally, are shown in Ref. [7]. When u is constant, the d-
H 2 5 2=2 1 m2 1

4m sin u(r)
3r

b(2S ? I 2 T)
(2) functions are absent and Eq. (5) can be solved analytically.

There are bound states only when b sin u0 , 0. Then the
1 4mb(I ? r̂)(S ? = sin u(r)) 2 2imbc5S ? = cos u(r), bound state energies are

where T 5 3(S ? r̂)(I ? r̂) 2 S ? I is the spin–isospin tensor
EN 5 6m F1 2

sin2 u0

N 2 G1/2

, N . k, (7)interaction. I choose u(r) to be spherically symmetric and
with the following radial dependence:

where N is a positive integer playing the role of the
principal quantum number as in the hydrogen atom

u(r) 5 H2u0 if r , r0

u0 if r . r0 . case. The analytic form of the radial part of the ground
state is

This choice has two advantages. First, the last term in the
above equation vanishes and the upper two and the lower
two components of each of the Dirac spinors become de-

c k,m
t,(2)k11 p 1 1 1

m sin u0k
(k 1 1)(2k 1 1)

r

2 Fm sin u0

(2k 1 1)
Ïk/(k 1 1)G r2coupled and b simply becomes a numerical factor (11 for

the upper two components of the Dirac spinors and 21
for the lower two). Second, when the last term is absent,
H 2 commutes with (S 1 I)2, in addition to commuting with 3 r k21 exph2[m sin u0/(k 1 1)] rj;

(8)

the operators that commute with H. Hence the states can
be decomposed into spin–isospin singlets and triplets.

From now on I concentrate on the case u0 5 f/2. ThisWhen the matrix elements of T are computed, one obtains

F2=2
k 1 m2 2

2m sin u(r)
r

b 2 2m sin u0bd(r 2 r0)G c k,m
s,(2)k ,H 2c k,m

s,(2)k 5 (3)

H 2c k,m
t,(2)k 5 [2=2

k 1 m2 1 2m sin u0bd(r 2 r0)]c k,m
t,(2)k ; k $ 1, (4)

5 6
H 2

11 5 2=2
k21 1 m2 1

2m sin u(r)k
(2k 1 1)r

b 1
2m sin u0

(2k 1 1)
bd(r 2 r0)

Sg̃1(r)

g̃2(r)
DH 2

12 5 H 2
21 5 2

2m
r

b
Ïk(k 1 1)

2k 1 1
[sin u(r) 2 2 sin u0rd(r 2 r0)]H 2c k,m

t,(2)k11 p (5)

H2
22 5 2=2

k11 1 m2 1
2m sin u(r)(k 1 1)

(2k 1 1)r
b 2

2m sin u0

2k11
bd(r 2 r0)

F2=2
k 1

2
r 2 1 m2 1

2m sin u(r)
r

b 2 2m sin u0bd(r 2 r0)G c 0
t,(2)1 ,H 2c 0

t,(2)1 5 (6)

corresponds to a winding number one soliton. In the nextwhere
section, I discuss a numerical method for obtaining eigen-
values of Eq. (5).

=2
k 5

1
r

2
r r 2

k(k 1 1)
r 2 .

2. THE NUMERICAL METHOD

Equation (5) only applies to states with k $ 1. The numeri- As mentioned before, I use the shooting method [1] in
order to solve Eq. (5). Before discussing this method incal method for solving the above ODE’s are similar. In

this paper I show how to solve for the eigenvalues of some detail, I would like to discuss some transformations
and analytic results which render the problem more mana-Eq. (5), since it is the most difficult one. The resulting

eigenvalues for all of the above equations, including the gable. Most of these points are universal in these types
of problems:case of constant u, where the ODE’s can be solved analyti-
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1. For the ODE under consideration, the range of the By choosing the fitting point to be the position of the
d-functions, one can implement them as boundary condi-independent variable is 0 # r # y. It is more efficient to

transform r to a new variable x with the range 0 # x # 1. tions on the slope discontinuities at the fitting point. To
do this, one can integrate the ODE in the range r0 2 « #One can implement this by a variety of smooth functions.

I have chosen the following r # r0 1 « as « R 0, to obtain

x 5 tanh(br) or r 5
1

2b
ln S1 1 x

1 2 xD, (9) dg1,k

dr Ur01«

r02«

5
2m sin u0b

2k 1 1
g1,k(r0)

where b is an arbitrary stretch factor. Of course, as is the
1

4m sin u0bÏk(k 1 1)
2k 1 1

g2,k(r0), (13)case with any such transformation, the advantage is the
following. In the integration process, with constant width
of steps in x, the width of the steps in r get progressively dg2,k

dr Ur01«

r02«

5 2
2m sin u0b

2k 1 1
g2,k(r0)

larger. Since the important part of the integration is usually
concentrated at small values of r, this should help the
adaptive step size control.

1
4m sin u0bÏk(k 1 1)

2k 1 1
g1,k(r0). (14)

2. By studying the ODE close to r 5 0 one can show
that in that region the behaviour of the functions are

Now I discuss the algorithm. Since the underlying princi-
g1,k(r) p r k, g2,k(r) p rk11, (10) ples of the shooting method are discussed fully in the Ref.

[1], I discuss the method only very briefly with the emphasis
where g ; rg̃. Although at first sight it seems that g2,k on the implementation of the aforementioned modifica-
should go as r k12, the strong coupling with g1,k reduces its tions and analytic results. As mentioned before, the basic
exponent by one. plan is to integrate from the left (x 5 0) and the right

(x 5 1) towards the fitting point, which is chosen to be the3. For large values of r, one can easily show that the
position of the d-functions (x0). The integration is donesolutions are exponentially decreasing
using fifth-order Runge–Kutta steps with adaptive stepsize
control. At the fitting point the mismatch between theg1,2;k 5 h1,2;k exp(2lr), l ; Ïm2 2 E 2, (11)
functions and the departure of the slope discontinuities
from the above conditions are used to correct the initialwhere h1,2;k are some polynomials of degrees n1,2 . Then
guess for the starting values of the functions and their
derivatives. This is done by using the Newton–Raphson
method. To do this, first the partial derivative matrix isg9

g
5

h9

h
2 l R

n
r

2 l R 2 l, as r R y. (12)
replaced by its LU decomposition, and then the matrix
equation is solved (I will discuss this part in more detail

4. By going back to the original ODE, we know that at the end of this section). Then one iterates this procedure
the overall scale of the wavefunctions is arbitrary. Hence, until a set of specified tolerances on the mismatches of the
to find the eigenvalues, the normalization is irrelevant and values of the functions at the fitting point are satisfied.
one can fix the value of one of the functions or their deriva- It is worth mentioning that rather than the fifth-order
tives at some point in the range. For the algorithm, I choose Runge–Kutta integration algorithm used here, other more
to fix the value of one of the derivatives close to r 5 y powerful and efficient integration algorithms could be
for the following reason. In these types of problems there used. For example, for the solution of the initial value one-
are usually exponentially increasing solutions with the dimensional Schrödinger equation, Raptis and Cash [9]
same eigenvalues as the exponentially decreasing ones and have developed an exponential and Bessel fitted variable
in physical applications one is usually interested in normal- step method of order 6 for large r region and their own
izable solutions (i.e., a bound state with probability 1). To less tailored method [10] for small r region, which are both
obtain only the normalizable solutions, I fix the slope of one based on the two step formula of Cash and Raptis [11] with
of the functions close to r 5 y to be a very small number. variable coefficients. For this problem their exponentially

fitted method is more appropriate since the potentials fall5. The presence of the d-functions is the main reason
why I choose the shooting method. Since all of the off slower than 1/r2 and hence the Bessel fitted method is

not very suitable, and for the large r region the solutionsd-functions appearing in Eq. (5) are at the same position r0 ,
the shooting method can be easily used. One can integrate are indeed exponentially decaying. Also Simos [12] has

developed a variable step P-stable method of order 6 and 8(‘‘shoot’’) from the left and the right towards a fitting point.
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with a phase lag of the same order. As far as the embedded two boundary conditions, are used to generate the starting
value of Y close to x 5 0, and whose last two components,Runge–Kutta method is concerned, Prince and Dormand

[13] have developed formulae of order 6(5) and 8(7) and along with the three boundary conditions, are used to gen-
erate the starting value of Y close to x 5 1. However, thisDormand et al. [14] have developed formulae of order 8(6)

and 12(10) which should be more efficient than the lower poses an unnecessary burden on the algorithm. Since the
eigenvalue Y1,k is constant, we can use the same value fororder formulae for higher precisions.

Since the main objective of this article is the illustration it at x 5 0 and x 5 1, and since its derivative is zero, its
values at the fitting point will automatically match and theof the solution of a rather complicated problem using the

shooting method and how to make the initialization and matching conditions reduces to solving a 4 3 4 system,
rather than a 5 3 5 one. Using this point greatly increasesiteration procedure efficient, I have elected to use the clas-

sical fifth-order Runge–Kutta method for the integration the radius of convergence. Using the analytic results re-
corded in Eqs. (10), (12), the four components of V arepart of the method. Now I continue describing the rest of

the method. used as
The two coupled, second-order, eigenvalue problem

Y1,k(«1 ) 5 V1 ,ODE’s can be turned into five coupled first-order ODE’s
by the standard methods. One defines the eigenvalue l2

Y1,k(1 2 «2) 5 V1 , (16)
as a new (constant) function which I have named Y1,k . The
rest of the variables are: Y2,k(x) 5 g1,k(x), Y3,k(x) 5 (dg1,k/ Y2,k(«1 ) 5

«1

k
V2 ,

dx)(x), Y4,k(x) 5 g2,k(x), and Y5,k(x) 5 (dg2,k/dx)(x). Then
the ODE becomes

Y2,k(1 2 «2 ) 5 2
b[1 2 (1 2 «2 )2]

ÏV1

V4 , (17)

dY1

dx
5 0, Y3,k(«1 ) 5 V2 ,

Y3,k(1 2 «2) 5 V4 , (18)dY2

dx
; Y3 ,

Y4,k(«1 ) 5
«1

k 1 1
V3 ,

dY3

dx
5

1
[b(1 2 x2)]2 HFk(k 2 1)

r2 1
2km sin u(r)

(2k 1 1)r
b 1 Y1G Y2

Y4,k(1 2 «2 ) 5 2
b[1 2 (1 2 «2 )2]

ÏV1

FIX, (19)

2
2mÏk(k 1 1) sin u(r)

(2k 1 1)r
bY4J1

2x
1 2 x2 Y3 , Y5,k(«1 ) 5 V3 ,

Y5,k(1 2 «2 ) 5 FIX, (20)
dY4

dx
; Y5 ,

where «1,2 are some small numbers and FIX is a small fixed
number corresponding to the overall scale freedom. TodY5

dx
5

1
[b(1 2 x2)]2 start the program one must supply some initial value for

V. The routine then integrates the differential equation
from x 5 0 and x 5 1 towards the fitting point x0 . At theHF(k 1 1)(k 1 2)

r2 1
2(k 1 1)m sin u(r)

(2k 1 1)r
b 1 Y1G Y4 fitting point the matching conditions are (recall that the

values of Y1,k from the left and right already match)

2
2mÏk(k 1 1) sin u(r)

(2k 1 1)r
bY2J1

2x
1 2 x2 Y5 .

(15)

F1,k 5 2Y2,k Ux01«

x02«

, (21)

Now I discuss the boundary conditions. As is usually the
case, one cannot start the integration exactly at x 5 0 or

F2,k 5 2 Y3,k Ux01«

x02«

1
1

b(1 2 x2
0 ) F2m sin u0b

2k 1 1
Y2,k(x0)x 5 1, but only close to these values. The boundary condi-

tions are Y2(0) 5 Y4(0) 5 Y2(1) 5 Y4(1) 5 0, in addition
to the overall scale freedom. To implement these close to
the boundaries, one can choose three boundary conditions 1

4m sin u0bÏk(k 1 1)
2k 1 1

Y4,k(x0 )G (22)
close to x 5 1 (using the scale freedom) and two close to
x 5 0. To generate a complete starting vector Y close to

F3,k 5 2Y4,k Ux01«

x02«

, (23)x 5 0 and x 5 1, one can use an arbitrary five-component
vector V, whose first three components, along with the



166 SIAMAK S. GOUSHEH

F4,k 5 2 Y5,k Ux01«

x02«

1
1

b(1 2 x2
0 ) F2

2m sin u0b
2k 1 1

Y4,k(x0)

1
4m sin u0bÏk(k 1 1)

2k 1 1
Y2,k(x0 )G (24)

Note that if there are no d-functions present in the prob-
lem, the slopes of the functions would have to match, and
the second pieces of the RHS’s of Eqs. (22), (24) would
be missing. For a perfect solution, the discrepancy vector
F should vanish. After one round of integration F is com-
puted. Then the routine alters each of the values of the
components of V separately by the corresponding com-
ponents of dV (initially user supplied) and repeats the
integration to obtain a new set of discrepancy vectors.
Then from the difference between these quantities, it com-
putes

FIG. 1. The energy levels for c k,m
t,(2)k11 as a function of mr0 (r0 is the

position of the d-functions), for k 5 0, 1, 2 when u0 5 f/2. These states(A)ij ;
Fi

Vj
.

are the solutions to Eqs. (5), (6). The eigenvalues of these equations
l2 5 m2 2 E 2 were obtained by the shooting method as described in the
text. The ‘‘upper and lower two’’ labels refer to the upper and lower two

Then by using A and F, the algorithm solves for a set of components of the Dirac spinors in the original Dirac equation (Eq. (1))
corrections to the V, named B, so as to make the discrep- and are distinguished by the parameter b 5 1 and b 5 21, respec-

tively.ancy zero after the next round of integration. This is done
by using Newton-Raphson method to solve for the correc-
tion B and then adding it to V,

eigenvalue, it is best to set the initial guess slightly higher
(away from the continuum) than its expected value even

(A)ijBj 5 2Fi , where 1 # i, j # 4, (25) if there are no states between the state in question and
the continuum. If there are states between the one in ques-V new

i 5 Vi 1 Bi , (26)
tion and the continuum, of course the pull towards the
lower values becomes stronger.The process continues until a desired accuracy constraint

on, for example, the eigenvalue is satisfied. In practice I • One additional point can be taken into account which
have found that when the initial guesses on the values of helps the convergence of the iteration process. The incre-
the derivatives are within a factor of 10 and that of the ments dV used for the differentiation should partially de-
eigenvalue within 0.1, after about seven iterations one ob- pend on the correction vector B for the following reason.
tains a factor of 10212 accuracy (using double precision). Suppose the initial value of V was off by a factor of 1000.
When I used the program for the case of constant u, in Then, if the values of dV and B are correlated, after the
which case I had solved the system analytically, a factor next round of integrations, the subroutine using Newton–
of 10212 accuracy reported by the program was only accu- Raphson method to find the corrections for the next round,
rate to 10210 as compared to the actual value. This is due will get a more realistic information from the matrix A
to the approximate nature of the implementation of Eqs. regarding how the necessary changes will actually alter F.
(10), (12) only close to the boundaries. Two additional This will definitely increase the radius of convergence. In
points are worth mentioning: the latter stages of the iteration process, where the value

of V is more or less pinned down, one needs to know the
• ‘‘Aim’’ the eigenvalue from above. When the program response of F to smaller values of B. However, in practice

is searching for an eigenvalue, each of the eigenvalues has we want 1025V # dV # 1021V; otherwise the derivatives
a certain pull or attraction. In general, I have found that become meaningless. Hence we set dV ; B, but subject
the larger the absolute value of the eigenvalue (i.e., more to the above restriction.
strongly bound, in the case of bound states) the larger the
pull. Even though each of the eigenvalues in the continuum The eigenvalues of Eqs. (5), (6), as a function of mr0 ,

are shown in Fig. 1. Now I would like to discuss the resultsshould not have any pull, the whole continuum seems to
have a finite pull. For this reason, when searching for an and their physical significance. First let us concentrate on



SOLVING COUPLED SCHRÖDINGER TYPE ODE’S 167

potential increases as the radius of the shell is increased.
Now we can analyze the qualitative behavior of E 2 for the
k 5 0, ‘‘upper two’’ case shown in Fig. 1. When r0 5 0,
the potential for the ‘‘upper two’’ is 2/r and no bound state
exists. As r0 is increased, the potential acquires a negative
piece and for r0 large enough one bound state appears. As
r0 R y, the potential becomes 22/r plus the attractive
‘‘d-shell’’ at infinity. The 22/r piece wants to pull down
E 2 to 0.750m2; however, with the help of the ‘‘d-shell’’
piece, E 2 should be pulled down even lower. The re-
sults shown in Fig. 1 confirms this qualitative argument
and indicates that E 2 is actually pulled down to 0, as
r0 R y.

The case of c k,m
t,(2)k11 , which are the solutions to Eq. (5)

for k $ 1, is more complicated because there are two
coupled second-order equations and the potentials on theFIG. 2. The graphical representation of the ‘‘potentials’’ for the grand

spin zero triplet spin-isospin states c 0
t,(2)1 in Eq. (6), when u0 5 f/2. The diagonals and off-diagonals have different coefficients with

centrifugal term is not included. The ‘‘upper two’’ and ‘‘lower two’’ refer opposite signs. Also the d-functions have different signs
to b 5 1 and b 5 21, respectively. The d-function is represented by a even on the diagonals. When r0 5 0, the analytical resultnarrow deep well (high barrier) of area 21 (11), when it is attractive

recorded in Eq. (7) gives E 2 5 h0.750, 0.889jm2 for the(repulsive). Note that as r0 R 0, the potentials for b 5 61 cases approach
‘‘lower two’’ k 5 h1, 2j, respectively, and E 2 5 m2 for62/r, respectively.
the ‘‘upper two.’’ When r0 5 y, in the absence of the d-
functions, again we can use those analytic results, except
that the roles of the ‘‘upper’’ and ‘‘lower’’ are reversed.the k 5 0 case, whose states have been denoted by
The results shown in Fig. 1 agree with the analytic resultc 0

t,(2)1 , which are simpler and are the solutions to Eq. (6).
for r0 5 0. We can note that as r0 R y, the d-functionsThe ‘‘potentials’’ for this equation are depicted in Fig.
must be responsible for dragging all of the levels down to2.1 The potentials in each case consist of attractive and
zero, even though there are partial cancellations be-repulsive 2/r pieces separated by d-functions. In the ‘‘lower
tween them.two’’ case we see that as r0 R 0, the potential becomes

22/r, which is Coulombic and the ground state energy can
be directly written down in analogy with the hydrogen
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